基于人工智能的校友管理系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)
import pandas as pd
# 加載校友數(shù)據(jù)
alumni_data = pd.read_csv('alumni.csv')
alumni_data.dropna(inplace=True)
alumni_data['graduation_year'] = alumni_data['graduation_year'].astype(int)
# 顯示前幾行數(shù)據(jù)
print(alumni_data.head())
]]>
from sklearn.cluster import KMeans
# 特征選擇
features = alumni_data[['age', 'job_category']]
# 聚類(lèi)模型
kmeans = KMeans(n_clusters=5)
alumni_data['cluster'] = kmeans.fit_predict(features)
print(alumni_data[['name', 'cluster']])
]]>
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
nltk.download('punkt')
nltk.download('stopwords')
def extract_keywords(description):
stop_words = set(stopwords.words('english'))
words = word_tokenize(description)
filtered_words = [word for word in words if word.isalnum() and word not in stop_words]
return filtered_words
# 示例
description = "I am an AI researcher with expertise in machine learning."
print(extract_keywords(description))
]]>
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
# 構(gòu)建推薦模型
model = Sequential()
model.add(Dense(64, input_dim=5, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# 訓(xùn)練模型
model.fit(X_train, y_train, epochs=10, batch_size=32)
]]>
本站知識(shí)庫(kù)部分內(nèi)容及素材來(lái)源于互聯(lián)網(wǎng),如有侵權(quán),聯(lián)系必刪!
讀過(guò)這篇文章的讀者還喜歡:
校友會(huì)系統(tǒng)的Java實(shí)現(xiàn)與功能探索校友會(huì)系統(tǒng)與大學(xué)的共生關(guān)系校友會(huì)系統(tǒng)在師范大學(xué)中的作用與意義探索校友會(huì)管理系統(tǒng)的開(kāi)源之路校友系統(tǒng)+大模型知識(shí)庫(kù)=知識(shí)與情感的雙倍快樂(lè)打造高效校友會(huì)管理系統(tǒng)的開(kāi)發(fā)實(shí)踐手把手教你打造校友會(huì)與工程學(xué)院聯(lián)動(dòng)管理系統(tǒng)基于大模型知識(shí)庫(kù)的校友管理系統(tǒng)構(gòu)建與應(yīng)用校友會(huì)系統(tǒng)在理工大學(xué)中的重要性與實(shí)踐構(gòu)建基于校友會(huì)系統(tǒng)的校園私董會(huì)平臺(tái)校友會(huì)管理系統(tǒng)與人工智能體的融合探索