基于大模型的校友信息管理系統(tǒng)設計與實現(xiàn)
import pandas as pd
# 加載校友數(shù)據(jù)
alumni_data = pd.read_csv('alumni.csv')
# 去除重復項
cleaned_data = alumni_data.drop_duplicates()
# 填補缺失值
cleaned_data.fillna(value={'email': 'unknown@university.edu'}, inplace=True)
# 保存清理后的數(shù)據(jù)
cleaned_data.to_csv('cleaned_alumni.csv', index=False)
]]>
from transformers import pipeline
# 初始化問答模型
qa_model = pipeline('question-answering', model='distilbert-base-cased-distilled-squad')
# 定義問題和上下文
question = "誰是2010年的畢業(yè)生?"
context = "Alumni Database contains records of all graduates since 2010."
# 獲取答案
answer = qa_model(question=question, context=context)
print(f"Answer: {answer['answer']}")
]]>
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
# 示例校友特征向量
alumni_features = np.array([[...], [...]])
# 用戶興趣向量
user_interests = np.array([...])
# 計算相似度
similarity_scores = cosine_similarity([user_interests], alumni_features)[0]
# 獲取最相似的校友索引
top_indices = np.argsort(similarity_scores)[-5:]
recommended_alumni = [alumni_list[i] for i in top_indices]
print(f"Recommended Alumni: {recommended_alumni}")
]]>
本站知識庫部分內(nèi)容及素材來源于互聯(lián)網(wǎng),如有侵權(quán),聯(lián)系必刪!